Mixed oxide fuel ( MOX fuel) is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.
For example, a mixture of 7% plutonium and 93% natural uranium reacts similarly, although not identically, to low-enriched uranium fuel (3 to 5% uranium-235). MOX usually consists of two phases, UO2 and PuO2, and/or a single phase solid solution (U,Pu)O2. The content of PuO2 may vary from 1.5 wt.% to 25–30 wt.% depending on the type of nuclear reactor.
One attraction of MOX fuel is that it is a way of utilizing surplus weapons-grade plutonium, an alternative to storage of surplus plutonium, which would need to be secured against the risk of theft for use in . On the other hand, some studies warned that normalizing the global commercial use of MOX fuel and the associated expansion of nuclear reprocessing would increase, rather than reduce, the risk of nuclear proliferation, by encouraging increased separation of plutonium from spent fuel in the civil nuclear fuel cycle.
Normally, with low-enriched uranium fuel being changed every five years or so, most of the plutonium-239 is "burned" in the reactor. It behaves like uranium-235, with a slightly higher cross section for fission, and its fission releases a similar amount of energy. Typically, about one percent of the spent fuel discharged from a reactor is plutonium, and some two-thirds of the plutonium is plutonium-239. Worldwide, almost 100 tonnes of plutonium in spent fuel arises each year.
Reprocessing the plutonium into usable fuel increases the energy derived from the original uranium by some 12%, and if the uranium-235 is also recycled by re-enrichment, this becomes about 20%. Plutonium is only reprocessed and used once as MOX fuel; spent MOX fuel, with a high proportion of and plutonium isotopes, is stored as waste.
Existing must be re-licensed before MOX fuel can be introduced because using it changes the operating characteristics of a reactor, and the plant must be designed or adapted slightly to take it; for example, more are needed. Often only a third to half of the fuel load is switched to MOX, but for more than 50% MOX loading, significant changes are necessary and a reactor needs to be designed accordingly. The System 80 reactor design deployed at the U.S. Palo Verde Nuclear Generating Station near Phoenix, Arizona was designed for 100% MOX core compatibility, but so far has always operated on fresh low enriched uranium. In theory, the three Palo Verde reactors could use the MOX arising from seven conventionally fueled reactors each year and would no longer require fresh uranium fuel.
Fast neutron BN-600 and BN-800 reactors are designed for 100% MOX loading. In 2022, the BN-800 was fully loaded with MOX fuel for the first time. Реактор БН-800 полностью перешел на МОКС-топливо
According to Atomic Energy of Canada Limited (AECL), could use 100% MOX cores without physical modification. "Swords into Ploughshares: Canada Could Play Key Role in Transforming Nuclear Arms Material into Electricity," in The Ottawa Citizen (22 August 1994): "CANDU ... reactor design inherently allows for the handling of full-MOX cores" AECL reported to the United States National Academy of Sciences committee on plutonium disposition that it has extensive experience in testing the use of MOX fuel containing from 0.5 to 3% plutonium.
As of 2015, the only demonstration of twice-recycled, high-burnup fuel occurred in the Phénix fast reactor.
The United States was building a MOX fuel plant at the Savannah River Site in South Carolina. Although the Tennessee Valley Authority (TVA) and Duke Energy expressed interest in using MOX reactor fuel from the conversion of weapons-grade plutonium, TVA might use MOX fuels from SRS, June 10, 2009 TVA (the most likely customer) said in April 2011 that it would delay a decision until it could see how MOX fuel performed in the nuclear accident at Fukushima Daiichi. New Doubts About Turning Plutonium Into a Fuel, April 10, 2011 In May 2018, the Department of Energy reported that the plant would require another $48 billion to complete, on top of the $7.6 billion already spent. Construction was cancelled.
Licensing and safety issues of using MOX fuel include:
About 30% of the plutonium originally loaded into MOX fuel is consumed by use in a thermal reactor. In theory, if one third of the core fuel load is MOX and two-thirds uranium fuel, there is zero net change in the mass of plutonium in the spent fuel and the cycle could be repeated, but there are multiple difficulties in reprocessing spent MOX fuel. As of 2010, plutonium is only recycled once in thermal reactors, and spent MOX fuel is separated from the rest of the spent fuel to be stored as waste.
All plutonium isotopes are either fissile or fertile, although plutonium-242 needs to absorb 3 neutrons before becoming fissile curium-245; in thermal reactors isotopic degradation limits the plutonium recycle potential. About 1% of spent nuclear fuel from current is plutonium, with approximate isotopic composition 52% , 24% , 15% , 6% and 2% when the fuel is first removed from the reactor.
These fast reactors are better suited for the transmutation of other actinides than thermal reactors. Because thermal reactors use slow or moderated neutrons, the actinides that are not fissionable with thermal neutrons tend to absorb the neutrons instead of fissioning. This leads to a buildup of heavier actinides and lowers the number of thermal neutrons available to continue the chain reaction. A subcritical reactor with an external neutron source could either be run in the fast neutron spectrum (without the need for highly enriched fuels as otherwise common in fast reactors) or use to breed fissile materials, compensating the loss of neutrons by increasing the flux from the neutron source.
Also, the neutron irradiation of curium generates the higher , such as californium, which increase the neutron dose associated with the used nuclear fuel; this has the potential to pollute the fuel cycle with strong neutron emitters. As a result, it is likely that curium will be excluded from most MOX fuels. A subcritical reactor such as the Accelerator Driven System could "burn" such fuels if the problems associated with their handling and transportation are solved. However, to avoid due to unintended criticality, the neutronics must be known precisely at any given point in time, including the effect of build-up or consumption of neutron emitting nuclides as well as neutron poisons.
|
|